fifth, fourth, and so on—depending on where you press it—that were always there in the ground note but more difficult to hear. *
Tradition credits Pythagoras with inventing the
kanon
, an instrument with one string, and using it to experiment with sound. He would have found that the notes that sounded harmonious with the ground note were produced by dividing the string into equal parts. Dividing it into two equal parts produced a note an octave higher than the open string. Pressed so as to divide it into three equal parts, the string played a note a fifth above that octave; in four equal parts, it played a note a fourth above that. The series goes on to a major third, then a minor third, then smaller and smaller intervals, but there is no indication the Pythagoreans took the process any further than the interval of the fourth. †
Looking beyond the task of getting good, practical results from a musical instrument to ask more penetrating questions about what was going on, and whether it could have wider implications, required an unusual turn of mind. Though with hindsight a shift of focus from useful knowledge to recognizing deeper principles can look simple, it is not a trivial change. A lyre sounded pleasant used one way and not another way . . . but
why
? Often, in writings about the Pythagoreans, a clause added to that question has them asking whether there was any meaningful pattern? . . . any orderly structure? but they were not necessarily looking for pattern or order yet, for no precedent would have led them to expect it. Nevertheless, they were about to discover it.
When Pythagoras and his associates saw that certain ratios of string lengths always produced the octave, fifth, and fourth, it dawned on them that there was a hidden pattern behind the beauty they heard in music—a pattern that they were able to understand, but that they had not created or invented and could not change. Surely this pattern must not be an isolated instance. Similar mathematical and geometrical regularities must lie concealed behind all the everyday confusion and complexity of nature. There was order to the universe, and this order was made of numbers. This was the great Pythagorean insight, and it was different from all previous conceptions of nature and the universe. Though the Pythagoreans hardly knew what to do with the treasure they had found—and modern mathematicians and scientists are still learning—it has guided human thinking ever since. Pythagoras and his followers had also discovered that there apparently was a powerful link between human sense perceptions and the numbers that pervaded and governed everything. Nature followed a fundamental, rational, beautiful logic, and human beings were tuned in to it, not only on an intellectual level (they could discover and understand it) but also on the level of the senses (they could hear it in music).
There are other mathematical relationships hidden beneath the experience of music that neither Pythagoras nor others of his era had any way of discovering. The ratios he found represent the rate at which astring vibrates, but there was no way he could have studied the vibrations. However, after the initial discovery using a
kanon
or a lyre, Pythagoras and/or his early associates may well have begun listening for octaves, fourths, and fifths in other sounds and attempted to discover what could, and what could not, produce the intervals. Perhaps it is the memory of some of their experiments that lies behind several puzzling early stories in which Pythagoras made the discovery of the relationship in ways that he could not possibly, in fact, have made it.
According to one tale Pythagoras was passing a blacksmith’s shop and noticed that the intervals between the pitches the hammers made as they struck were a fourth, a fifth, and an octave. That part of the story is possible, but the next part is not: The only differences between the hammers were their weights, and Pythagoras found
Fuyumi Ono
Tailley (MC 6)
Robert Graysmith
Rich Restucci
Chris Fox
James Sallis
John Harris
Robin Jones Gunn
Linda Lael Miller
Nancy Springer