picture is the basic tree, one of the ones from Figure 2. Encircling this central tree are eight others. All are the same as the central tree, except that one gene, a different gene in each of the eight, has been changed - ‘mutated’. For instance, the picture to the right of the central tree shows what happens when Gene 5 mutates by having +1 added to its value. If there’d been room, I’d have liked to print a ring of 18 mutants around the central tree. The reason for wanting 18 is that there are nine genes, and each one can mutate in an ‘upward’ direction (1 is added to its value) or in a ‘ downward’ direction (1 is subtracted from its value). So a ring of 18 trees would be enough to represent all possible single-step mutants that you can derive from the one central tree.
Each of these trees has its own, unique ‘genetic formula’, the numerical values of its nine genes. I haven’t written the genetic formulae down, because they wouldn’t mean anything to you, in themselves. That is true of real genes too. Genes only start to mean something when they are translated, via protein synthesis, into growingrules for a developing embryo. And in the computer model too, the numerical values of the nine genes only mean something when they are translated into growing rules for the branching tree pattern. But you can get an idea of what each gene does by comparing the bodies of two organisms known to differ with respect to a certain gene. Compare, for instance, the basic tree in the middle of the picture with the two trees on either side, and you’ll get some idea of what Gene 5 does.
This, too, is exactly what real-life geneticists do. Geneticists normally don’t know how genes exert their effects on embryos. Nor do they know the complete genetic formula of any animal. But by comparing the bodies of two adult animals that are known to differ according to a single gene, they can see what effects that single gene has. It is more complicated than that, because the effects of genes interact with each other in ways that are more complicated than simple addition. Exactly the same is true of the computer trees. Very much so, as later pictures will show.
You will notice that all the shapes are symmetrical about a left\right axis. This is a constraint that I imposed on the DEVELOPMENT procedure. I did it partly for aesthetic reasons; partly to economize on the number of genes necessary (if genes didn’t exert mirror-image effects on the two sides of the tree, we’d need separate genes for the left and the right sides); and partly because I was hoping to evolve animal-like shapes, and most animal bodies are pretty symmetrical. For the same reason, from now on I shall stop calling these creatures ‘trees’, and shall call them ‘bodies’ or ‘biomorphs’. Biomorph is the name coined by Desmond Morris for the vaguely animal-like shapes in his surrealist paintings. These paintings have a special place in my affections, because one of them was reproduced on the cover of my first book. Desmond Morris claims that his biomorphs ‘evolve’ in his mind, and that their evolution can be traced through successive paintings.
Back to the computer biomorphs, and the ring of 18 possible mutants, of which a representative eight are drawn in Figure 3. Since each member of the ring is only one mutational step away from the central biomorph, it is easy for us to see them as children of the central parent. We have our analogue of REPRODUCTION, which, like DEVELOPMENT, we can wrap up in another small computer program, ready to embed in our big program called EVOLUTION. Note two things about REPRODUCTION. First, there is no sex; reproduction is asexual. I think of the biomorphs as female, therefore, because asexual animals like greenfly are nearly always basically female in form.
Second, my mutations are all constrained to occur one at a time. A child differs from its parent at only one of the nine genes; moreover, all mutation
Jonathon King
Marilyn Campbell
John Wray
Toni Lee
Virginia Smith
Craig Jones
Stuart Woods
Corrine Shroud
Audrey Carlan
Oliver Tidy