as a premise in a chain of reasoning. Elementary particles must be indivisible, Newton wrote in his Opticks , “so very hard as never to wear or break in pieces; no ordinary power being able to divide what God himself made one in the first creation.” Elementary particles cannot be indivisible, René Descartes wrote in his Principles of Philosophy :
There cannot be any atoms or parts of matter which are indivisible of their own nature (as certain philosophers have imagined)… . For though God had rendered the particle so small that it was beyond the power of any creature to divide it, He could not deprive Himself of the power of division, because it was absolutely impossible that He should lessen His own omnipotence… .
Could God make atoms so flawed that they could break? Could God make atoms so perfect that they would defy His power to break them? It was only one of the difficulties thrown up by God’s omnipotence, even before relativity placed a precise upper limit on velocity and before quantum mechanics placed a precise upper limit on certainty. The natural philosophers wished to affirm the presence and power of God in every corner of the universe. Yet even more fervently they wished to expose the mechanisms by which planets swerved, bodies fell, and projectiles recoiled in the absence of any divine intervention. No wonder Descartes appended a blanket disclaimer: “At the same time, recalling my insignificance, I affirm nothing, but submit all these opinions to the authority of the Catholic Church, and to the judgment of the more sage; and I wish no one to believe anything I have written, unless he is personally persuaded by the evidence of reason.”
The more competently science performed, the less it needed God. There was no special providence in the fall of a sparrow; just Newton’s second law, f = ma . Forces, masses, and acceleration were the same everywhere. The Newtonian apple fell from its tree as mechanistically and predictably as the moon fell around the Newtonian earth. Why does the moon follow its curved path? Because its path is the sum of all the tiny paths it takes in successive instants of time; and because at each instant its forward motion is deflected, like the apple, toward the earth. God need not choose the path. Or, having chosen once, in creating a universe with such laws, He need not choose again. A God that does not intervene is a God receding into a distant, harmless background.
Yet even as the eighteenth-century philosopher scientists learned to compute the paths of planets and projectiles by Newton’s methods, a French geometer and philosophe , Pierre-Louis Moreau de Maupertuis, discovered a strangely magical new way of seeing such paths. In Maupertuis’s scheme a planet’s path has a logic that cannot be seen from the vantage point of someone merely adding and subtracting the forces at work instant by instant. He and his successors, and especially Joseph Louis Lagrange, showed that the paths of moving objects are always, in a special sense, the most economical. They are the paths that minimize a quantity called action —a quantity based on the object’s velocity, its mass, and the space it traverses. No matter what forces are at work, a planet somehow chooses the cheapest, the simplest, the best of all possible paths. It is as if God—a parsimonious God—were after all leaving his stamp.
None of which mattered to Feynman when he encountered Lagrange’s method in the form of a computational shortcut in Introduction to Theoretical Physics. All he knew was that he did not like it. To his friend Welton and to the rest of the class the Lagrange formulation seemed elegant and useful. It let them disregard many of the forces acting in a problem and cut straight through to an answer. It served especially well in freeing them from the right-angle coordinate geometry of the classical reference frame required by Newton’s equations. Any reference frame would do for the Lagrangian
Simon Brett
Ben Peek
John McEnroe;James Kaplan
Victoria Barry
T.A. Hardenbrook
Oliver Strange
William K. Klingaman, Nicholas P. Klingaman
D. J. Molles
Abby Green
Amy Jo Cousins