or close to the speed of light, cosmologists refer to them as “radiation,” whether or not they are actually electromagnetic radiation in the usual sense.) Einstein taught us long ago that particles have energy, even when they’re not moving at all: E = mc 2 means that the energy of a perfectly stationary massive particle is given by its mass times the speed of light squared. For our present purposes, the crucial aspect of matter is that it dilutes away as the universe expands. 47 What general relativity actually predicts is that the expansion should be decelerating, as long as the energy is diluting away. If it’s not—if the density of energy, the amount of energy in each cubic centimeter or cubic light-year of space, is approximately constant—then that energy provides a perpetual impulse to the expansion of space, and the universe will actually be accelerating.
It’s possible, of course, that general relativity is not the correct theory of gravity on cosmological scales, and that possibility is one that physicists take very seriously. It seems more likely, however, that general relativity is correct, and the observations are telling us that most of the energy in the universe is not in the form of “matter” at all, but rather in the form of some stubbornly persistent stuff that sticks around even as space expands. We’ve dubbed that mysterious stuff “dark energy,” and the nature of the dark energy is very much a favorite research topic for modern cosmologists, both theorists and observers.
We don’t know much about dark energy, but we do know two very crucial things: It’s nearly constant throughout space (the same amount of energy from place to place), and also nearly constant in density through time (the same amount of energy per cubic centimeter at different times). So the simplest possible model for dark energy would be one featuring an absolutely constant density of energy through all space and time. And in fact, that’s an old idea, dating back to Einstein: He called it “the cosmological constant,” and these days we often call it “vacuum energy.” (Some people may try to convince you that there is some difference between vacuum energy and the cosmological constant—don’t fall for it. The only difference is which side of the equation you put it on, and that’s no difference at all.)
What we’re suggesting is that every cubic centimeter of space—out in the desolate cold between the galaxies, or at the center of the Sun, or right in front of your face—there is a certain amount of energy, over and above whatever comes from the particles and photons and other things that are actually located in that little cube. It’s called “vacuum energy” because it’s present even in a vacuum, in a perfectly empty space—a minimum amount of energy inherent in the fabric of spacetime itself. 48 You can’t feel it, you can’t see it, you can’t do anything with it, but it is there. And we know it is there because it exerts a crucial influence on the universe, imparting a gentle push that causes distant galaxies to accelerate away from us.
Unlike the gravity caused by ordinary matter, the effect of vacuum energy is to push things apart rather than pull them together. When Einstein first proposed the cosmological constant in 1917, his motivation was to explain a static universe, one that wasn’t expanding or contracting. This wasn’t a misguided philosophical stance—it was the best understanding according to the astronomy of the day; Hubble wouldn’t discover the expansion of the universe until 1929. So Einstein imagined a universe in delicate balance between the pull of gravity among galaxies and the push of the cosmological constant. Once he learned of Hubble’s discovery, he regretted ever introducing the cosmological constant—had he resisted the temptation, he might have predicted the expansion of the universe before it was discovered.
THE MYSTERY OF VACUUM ENERGY
In theoretical
Clive James
Cherie Nicholls
Melissa J. Morgan
Debra Webb, Regan Black
Shayla Black Lexi Blake
Raymond Benson
Barbara Weitz
Dan Brown
Michael Cadnum
Piers Anthony