For the Love of Physics
just astonishing. Once we realize it’s there—and begin to understand it—we begin to see evidence for it everywhere, from balloons to barometers, to why a drinking straw works, to how deep you can swim and snorkel in the ocean.
    The things we don’t see at first, and take for granted, like gravity and air pressure, turn out to be among the most fascinating of all phenomena. It’s like the joke about two fish swimming along happily in a river. One fish turns to the other, a skeptical look on its face, and says, “What’s all this new talk about ‘water’?”
    In our case, we take the weight and density of our invisible atmosphere for granted. We live, in truth, at the bottom of a vast ocean of air, which exerts a great deal of pressure on us every second of every day. Suppose I hold my hand out in front of me, palm up. Now imagine a very long piece of square tubing that is 1 centimeter wide (on each side, of course) balanced on my hand and rising all the way to the top of the atmosphere. That’s more than a hundred miles. The weight of the air alone inthe tube—forget about the tubing—would be about 1 kilogram, or about 2.2 pounds. * That’s one way to measure air pressure: 1.03 kilograms per square centimeter of pressure is called the standard atmosphere. (You may also know it as about 14.7 pounds per square inch.)
    Another way to calculate air pressure—and any other kind of pressure—is with a fairly simple equation, one so simple that I’ve actually just put it in words without saying it was an equation. Pressure is force divided by area: P = F / A. So, air pressure at sea level is about 1 kilogram per square centimeter. Here’s another way to visualize the relationship between force, pressure, and area.
    Suppose you are ice-skating on a pond and someone falls through. How do you approach the hole—by walking on the ice? No, you get down on your stomach and slowly inch forward, distributing the force of your body on the ice over a larger area, so that you put less pressure on the ice, making it much less likely to break. The difference in pressure on the ice when standing versus lying down is remarkable.
    Say you weigh 70 kilograms and are standing on ice with two feet planted. If your two feet have a surface area of about 500 square centimeters (0.05 square meters), you are exerting 70/0.05 kilograms per square meter of pressure, or 1,400 kilograms per square meter. If you lift up one foot, you will have doubled the pressure to 2,800 kilograms per square meter. If you are about 6 feet tall, as I am, and lie down on the ice, what happens? Well, you spread the 70 kilograms over about 8,000 square centimeters, or about 0.8 square meters, and your body exerts just 87.5 kilograms per square meter of pressure, roughly thirty-two times less than while you were standing on one foot. The larger the area, the lower the pressure, and, conversely, the smaller the area, the larger the pressure. Much about pressure is counterintuitive.
    For example, pressure has no direction. However, the force caused by pressure does have a direction; it’s perpendicular to the surface the pressureis acting on. Now stretch out your hand (palm up) and think about the force exerted on your hand—no more tube involved. The area of my hand is about 150 square centimeters, so there must be a 150-kilogram force, about 330 pounds, pushing down on it. Then why am I able to hold it up so easily? After all, I’m no weight lifter. Indeed, if this were the only force, you would not be able to carry that weight on your hand. But there is more. Because the pressure exerted by air surrounds us on all sides, there is also a force of 330 pounds upward on the back of your hand. Thus the net force on your hand is zero.
    But why doesn’t your hand get crushed if so much force is pressing in on it? Clearly the bones in your hand are more than strong enough not to get crushed. Take a piece of wood of the size of your hand; it’s certainly not

Similar Books

Kiss the Girls

James Patterson

Commodity

Shay Savage

HOWLERS

Kent Harrington

The Divided Family

Wanda E. Brunstetter

After Glow

Jayne Castle

Some Like It Hawk

Donna Andrews

Spook Country

William Gibson