circular windows, lights from the passing decks flashed by. Sitting opposite each other, they said nothing. Both, without knowing why, were offended by the statement with which the monk had summed up their meeting. The feeling, however, was too undefined to merit examination—in the face of what awaited them.
The conference hall was located in the fifth section of the Eurydice. The ship, seen in flight from a distance, resembled a long, white grub with spherically bulging segments—and it was a winged grub, since flat fins protruded from its sides, ending in the hulls of the hydroturbines. The head of the Eurydice, flattened out, was encircled by a multitude of antenna spines like feelers or stingers. The spherical sections, joined by short cylinders having a diameter of thirty meters, were also locked together and reinforced by a double inner keel whenever the cosmic vessel accelerated, went full speed, or braked. The engines, called hydroturbines, were actually thermonuclear reactors of the flowstream type, and hydrogen in high vacuum served as their fuel.
This drive proved even better than the photon drive. The performance of nuclear fuels at near-light speeds fell, because the lion's share of the kinetic energy was expended in the propelling flame that beat uselessly into space and only a small fraction of the liberated power was transmitted to the rocket. A photon drive, also, required the ship to be loaded with millions of tons of matter and antimatter as its annihilative fuel. The flowstream engines, on the other hand, used interstellar hydrogen. Hydrogen atoms, though ubiquitous, were so dispersed in galactic space that the engines of this type began to work effectively only at speeds above 30,000 kilometers a second, and reached full capacity only when approaching the speed of light. A ship with such a drive could therefore neither take off from a planet itself, being too massive, nor by itself achieve the velocity at which the atoms falling into the intakes of the reactors condensed sufficiently for ignition. The gaping intake funnels then hurtled forward, so that even the greatest cosmic vacuum, thus rammed, packed enough hydrogen into their throats to kindle artificial spouts of sun in the firing chambers. The efficiency factor increased, and the ship, not laden with its own supply of fuel, could maintain a constant acceleration. After less than a year of an acceleration corresponding to Earth's gravity, the ship attained nearly 99 percent of the speed of light, and while minutes went by on board, decades passed on Earth.
The Eurydice had been built in orbit around Titan, for Titan was to serve as her starting platform. Many trillions of tons of the mass of that moon were converted, by conventional thermonuclear piles, into energy for the transformers, and they in turn as laser throwers sent columns of coherent light to the gigantic stern of the Eurydice —like packing gunpowder into the bottom of a cannon beneath an artillery shell. The moon first had to be stripped, by astroengineering, of its thick atmosphere. Radiochemical plants and hydronuclear power stations were built on the plateau of the equatorial continent, after all the mountains were melted down by combined heat blasts from disposable satellites. Their salvos turned the great formations into lava, and cryo-ballistic bombs hastened the freezing, to make the red-hot, flowing sea a hard, smooth plain: the artificial Mare Herculaneum. On the twelve thousand square miles of that plain grew a forest of laser throwers, the true Hercules of the expedition. At the critical hour it fired, to push the Eurydice from her stationary orbit. The long column of coherent light drove the ship, hitting the mirrors at her stern, beyond the solar system. As the driving beam weakened, the ship increasingly resorted to her own boosters, jettisoning their burnt-out casings beyond Pluto. It was only then that the wide-gaping hydros came into play.
Because they would be
Margaret Maron
Richard S. Tuttle
London Casey, Ana W. Fawkes
Walter Dean Myers
Mario Giordano
Talia Vance
Geraldine Brooks
Jack Skillingstead
Anne Kane
Kinsley Gibb