E=mc2

E=mc2 by David Bodanis Page B

Book: E=mc2 by David Bodanis Read Free Book Online
Authors: David Bodanis
Ads: Link
tenderly, your
    Albert
    The life they shared started out happily. His wife wasn't going to be at his level, but she really was a good student—on the university final exams where he scored 4.96, she came close, with a 4.0, and she certainly could have followed his work. (The myth that she had been responsible for his key work stems from nationalist Serb propaganda in the 1960s, as her family had originally been from near Belgrade.) But once their children came, and with their income so low that they only had part-time help, all the traditional sexism took over. When educated friends came to visit, his wife would try to join in, but this is never easy with an attention-frantic three-year-old son on your lap. You want to stay a part of the conversation, but after too many interruptions for getting toys and drawing pictures and picking up spilled food, the guests no longer stop their talk to recap things and bring you in. You're left out.
    Einstein finally left the patent office—though even when he did, in 1909, his chief was mystified as to why this young man was willing to turn his back on such a good career. He was finally offered a position in the Swiss university system, and then after a stint in Prague—where he played music and engaged in discussions at a salon that occasionally included a shy young man named Franz Kafka—Einstein ended up as a professor in Berlin. His success had now isolated him almost completely from his Bern friends. He was legally separated from his wife, and only occasionally got to see his adored two children.
    By that time, Einstein was taking his personal work in a different direction. The equation E=mc 2 was just a small part of the entire special theory of relativity. By 1915, he'd perfected an even grander theory, so powerful that the entire special theory was just one small part of that. (The Epilogue gives some highlights of that 1915 work—"Compared with this problem, the original theory of relativity is child's play.") He would be involved with the equation only once more, briefly, when he was a much older man.

    Mileva and Albert Einstein
    MAX FLUCKIGER, EINSTEIN IN BERN. COPYRIGHT BY PAUL HAUPT, BERN. AIP EMILIO SEGRE VISUAL ARCHIVES
    At this point there's a major shift in our story. The equation's first theoretical development was over; Einstein's personal contribution fades away. Europe's physicists accepted that E=mc 2 was true: that, in principle, matter could be transformed so that the frozen energy it was composed of could be let out. But no one knew how actually to get that to happen.
    There was one hint. It came in the strange objects that Marie Curie and others were investigating: the dense metals of radium, and uranium, and other substances, which were somehow able to pour out energy week after week, month after month; never using up whatever "hidden" source of supply they contained inside.
    A number of laboratories began to study how that might be happening. But to see what mechanisms were creating these great outwellings of energy, it wouldn't be enough to continue looking at the surface of things, simply measuring the weight or color or surface chemical properties of the mysteriously warm radium or uranium.
    Instead, the researchers would have to go within, deep into the very heart of these substances. That, ultimately, would show how the energy that E=mc 2 promised could be accessed. But what would they find, as they tried to peer into the smallest, inner structures within ordinary matter?

Into the Atom 8
    University students in 1900 were taught that ordinary matter—bricks and steel and uranium and everything else—was made of smaller particles, called atoms. But what atoms were made of no one knew. One common view was that they were something like tough and shiny ball bearings: mighty glowing entities that no one could see inside. It was only with the research of Ernest Rutherford, a great, booming bear of a man working at England's Manchester University, in the

Similar Books

Bonjour Tristesse

Françoise Sagan

Thunder God

Paul Watkins

Halversham

RS Anthony

One Hot SEAL

Anne Marsh

Lingerie Wars (The Invertary books)

janet elizabeth henderson

Objection Overruled

J.K. O'Hanlon